Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds.

Identifieur interne : 000000 ( Main/Exploration ); suivant : 000001

Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds.

Auteurs : Anjali G. Lothe [États-Unis] ; Shashank Singh Kalra [États-Unis] ; Meng Wang [États-Unis] ; Elizabeth Erin Mack [États-Unis] ; Claudia Walecka-Hutchison [États-Unis] ; Valerie A. Kickhoefer [États-Unis] ; Leonard H. Rome [États-Unis] ; Shaily Mahendra [États-Unis]

Source :

RBID : pubmed:31655399

Descripteurs français

English descriptors

Abstract

Amino-aromatic compounds, 2-amino-4-nitrotoluene (ANT), and 2,4-diaminotoluene (DAT) are carcinogens and environmentally persistent pollutants. In this study, we investigated their degradation by natural manganese peroxidase (nMnP) derived from Phanerochaete chrysosporium and recombinant manganese peroxidase packaged in vaults (vMnP). Encapsulation of manganese peroxidase (MnP) in ribonucleoprotein nanoparticle cages, called vaults, was achieved by creating recombinant vaults in yeast Pichia pastoris. Vault packaging increased the stability of MnP by locally sequestering multiple copies of the enzyme. Within 96  h, both vMnP and nMnP catalyzed over 72% removal of ANT in-vitro, which indicates that vault packaging did not limit substrate diffusion. It was observed that vMnP was more efficient than nMnP and P. chrysosporium for the catalysis of target contaminants. Only 57% of ANT was degraded by P. chrysosporium even when MnP activity reached about 480 U L-1 in cultures. At 1.5 U L-1 initial activity, vMnP achieved 38% of ANT and 51% of DAT degradation, whereas even 2.7 times higher activity of nMnP showed insignificant biodegradation of both compounds. These results imply that due to protection by vault cages, vMnP has lower inactivation rates. Thus, it works effectively at lower dosage for a longer duration compared to nMnP without requiring frequent replenishment. Collectively, these results indicate that fungal enzymes packaged in vault nanoparticles are more stable and active, and they would be effective in biodegradation of energetic compounds in industrial processes, waste treatment, and contaminated environments.

DOI: 10.1016/j.chemosphere.2019.125117
PubMed: 31655399


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds.</title>
<author>
<name sortKey="Lothe, Anjali G" sort="Lothe, Anjali G" uniqKey="Lothe A" first="Anjali G" last="Lothe">Anjali G. Lothe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalra, Shashank Singh" sort="Kalra, Shashank Singh" uniqKey="Kalra S" first="Shashank Singh" last="Kalra">Shashank Singh Kalra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Meng" sort="Wang, Meng" uniqKey="Wang M" first="Meng" last="Wang">Meng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mack, Elizabeth Erin" sort="Mack, Elizabeth Erin" uniqKey="Mack E" first="Elizabeth Erin" last="Mack">Elizabeth Erin Mack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Corteva Environmental Remediation, Corteva Agriscience, Newark, DE, 19711, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Corteva Environmental Remediation, Corteva Agriscience, Newark, DE, 19711</wicri:regionArea>
<wicri:noRegion>19711</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walecka Hutchison, Claudia" sort="Walecka Hutchison, Claudia" uniqKey="Walecka Hutchison C" first="Claudia" last="Walecka-Hutchison">Claudia Walecka-Hutchison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Environmental Remediation and Restoration, The Dow Chemical Company, Midland, MI, 48674, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Remediation and Restoration, The Dow Chemical Company, Midland, MI, 48674</wicri:regionArea>
<wicri:noRegion>48674</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kickhoefer, Valerie A" sort="Kickhoefer, Valerie A" uniqKey="Kickhoefer V" first="Valerie A" last="Kickhoefer">Valerie A. Kickhoefer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Vault Nano, Inc., Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vault Nano, Inc., Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rome, Leonard H" sort="Rome, Leonard H" uniqKey="Rome L" first="Leonard H" last="Rome">Leonard H. Rome</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mahendra, Shaily" sort="Mahendra, Shaily" uniqKey="Mahendra S" first="Shaily" last="Mahendra">Shaily Mahendra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States. Electronic address: mahendra@seas.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31655399</idno>
<idno type="pmid">31655399</idno>
<idno type="doi">10.1016/j.chemosphere.2019.125117</idno>
<idno type="wicri:Area/Main/Corpus">000043</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000043</idno>
<idno type="wicri:Area/Main/Curation">000043</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000043</idno>
<idno type="wicri:Area/Main/Exploration">000043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds.</title>
<author>
<name sortKey="Lothe, Anjali G" sort="Lothe, Anjali G" uniqKey="Lothe A" first="Anjali G" last="Lothe">Anjali G. Lothe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalra, Shashank Singh" sort="Kalra, Shashank Singh" uniqKey="Kalra S" first="Shashank Singh" last="Kalra">Shashank Singh Kalra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Meng" sort="Wang, Meng" uniqKey="Wang M" first="Meng" last="Wang">Meng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mack, Elizabeth Erin" sort="Mack, Elizabeth Erin" uniqKey="Mack E" first="Elizabeth Erin" last="Mack">Elizabeth Erin Mack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Corteva Environmental Remediation, Corteva Agriscience, Newark, DE, 19711, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Corteva Environmental Remediation, Corteva Agriscience, Newark, DE, 19711</wicri:regionArea>
<wicri:noRegion>19711</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walecka Hutchison, Claudia" sort="Walecka Hutchison, Claudia" uniqKey="Walecka Hutchison C" first="Claudia" last="Walecka-Hutchison">Claudia Walecka-Hutchison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Environmental Remediation and Restoration, The Dow Chemical Company, Midland, MI, 48674, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Remediation and Restoration, The Dow Chemical Company, Midland, MI, 48674</wicri:regionArea>
<wicri:noRegion>48674</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kickhoefer, Valerie A" sort="Kickhoefer, Valerie A" uniqKey="Kickhoefer V" first="Valerie A" last="Kickhoefer">Valerie A. Kickhoefer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Vault Nano, Inc., Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vault Nano, Inc., Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rome, Leonard H" sort="Rome, Leonard H" uniqKey="Rome L" first="Leonard H" last="Rome">Leonard H. Rome</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mahendra, Shaily" sort="Mahendra, Shaily" uniqKey="Mahendra S" first="Shaily" last="Mahendra">Shaily Mahendra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States. Electronic address: mahendra@seas.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemosphere</title>
<idno type="eISSN">1879-1298</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Environmental Pollutants (metabolism)</term>
<term>Nanoparticles (chemistry)</term>
<term>Organic Chemicals (metabolism)</term>
<term>Peroxidases (MeSH)</term>
<term>Phanerochaete (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Composés chimiques organiques (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Nanoparticules (composition chimique)</term>
<term>Peroxidases (MeSH)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Polluants environnementaux (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Environmental Pollutants</term>
<term>Organic Chemicals</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Nanoparticules</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés chimiques organiques</term>
<term>Phanerochaete</term>
<term>Polluants environnementaux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Peroxidases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Amino-aromatic compounds, 2-amino-4-nitrotoluene (ANT), and 2,4-diaminotoluene (DAT) are carcinogens and environmentally persistent pollutants. In this study, we investigated their degradation by natural manganese peroxidase (nMnP) derived from Phanerochaete chrysosporium and recombinant manganese peroxidase packaged in vaults (vMnP). Encapsulation of manganese peroxidase (MnP) in ribonucleoprotein nanoparticle cages, called vaults, was achieved by creating recombinant vaults in yeast Pichia pastoris. Vault packaging increased the stability of MnP by locally sequestering multiple copies of the enzyme. Within 96  h, both vMnP and nMnP catalyzed over 72% removal of ANT in-vitro, which indicates that vault packaging did not limit substrate diffusion. It was observed that vMnP was more efficient than nMnP and P. chrysosporium for the catalysis of target contaminants. Only 57% of ANT was degraded by P. chrysosporium even when MnP activity reached about 480 U L
<sup>-1</sup>
in cultures. At 1.5 U L
<sup>-1</sup>
initial activity, vMnP achieved 38% of ANT and 51% of DAT degradation, whereas even 2.7 times higher activity of nMnP showed insignificant biodegradation of both compounds. These results imply that due to protection by vault cages, vMnP has lower inactivation rates. Thus, it works effectively at lower dosage for a longer duration compared to nMnP without requiring frequent replenishment. Collectively, these results indicate that fungal enzymes packaged in vault nanoparticles are more stable and active, and they would be effective in biodegradation of energetic compounds in industrial processes, waste treatment, and contaminated environments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31655399</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1298</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>242</Volume>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Chemosphere</Title>
<ISOAbbreviation>Chemosphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds.</ArticleTitle>
<Pagination>
<MedlinePgn>125117</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0045-6535(19)32356-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chemosphere.2019.125117</ELocationID>
<Abstract>
<AbstractText>Amino-aromatic compounds, 2-amino-4-nitrotoluene (ANT), and 2,4-diaminotoluene (DAT) are carcinogens and environmentally persistent pollutants. In this study, we investigated their degradation by natural manganese peroxidase (nMnP) derived from Phanerochaete chrysosporium and recombinant manganese peroxidase packaged in vaults (vMnP). Encapsulation of manganese peroxidase (MnP) in ribonucleoprotein nanoparticle cages, called vaults, was achieved by creating recombinant vaults in yeast Pichia pastoris. Vault packaging increased the stability of MnP by locally sequestering multiple copies of the enzyme. Within 96  h, both vMnP and nMnP catalyzed over 72% removal of ANT in-vitro, which indicates that vault packaging did not limit substrate diffusion. It was observed that vMnP was more efficient than nMnP and P. chrysosporium for the catalysis of target contaminants. Only 57% of ANT was degraded by P. chrysosporium even when MnP activity reached about 480 U L
<sup>-1</sup>
in cultures. At 1.5 U L
<sup>-1</sup>
initial activity, vMnP achieved 38% of ANT and 51% of DAT degradation, whereas even 2.7 times higher activity of nMnP showed insignificant biodegradation of both compounds. These results imply that due to protection by vault cages, vMnP has lower inactivation rates. Thus, it works effectively at lower dosage for a longer duration compared to nMnP without requiring frequent replenishment. Collectively, these results indicate that fungal enzymes packaged in vault nanoparticles are more stable and active, and they would be effective in biodegradation of energetic compounds in industrial processes, waste treatment, and contaminated environments.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lothe</LastName>
<ForeName>Anjali G</ForeName>
<Initials>AG</Initials>
<AffiliationInfo>
<Affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kalra</LastName>
<ForeName>Shashank Singh</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Meng</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mack</LastName>
<ForeName>Elizabeth Erin</ForeName>
<Initials>EE</Initials>
<AffiliationInfo>
<Affiliation>Corteva Environmental Remediation, Corteva Agriscience, Newark, DE, 19711, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walecka-Hutchison</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Environmental Remediation and Restoration, The Dow Chemical Company, Midland, MI, 48674, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kickhoefer</LastName>
<ForeName>Valerie A</ForeName>
<Initials>VA</Initials>
<AffiliationInfo>
<Affiliation>Vault Nano, Inc., Los Angeles, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rome</LastName>
<ForeName>Leonard H</ForeName>
<Initials>LH</Initials>
<AffiliationInfo>
<Affiliation>Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mahendra</LastName>
<ForeName>Shaily</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States. Electronic address: mahendra@seas.ucla.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chemosphere</MedlineTA>
<NlmUniqueID>0320657</NlmUniqueID>
<ISSNLinking>0045-6535</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004785">Environmental Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009930">Organic Chemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="Y">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004785" MajorTopicYN="N">Environmental Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009930" MajorTopicYN="N">Organic Chemicals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bioremediation</Keyword>
<Keyword MajorTopicYN="N">Biotransformation</Keyword>
<Keyword MajorTopicYN="N">Dynamic structure</Keyword>
<Keyword MajorTopicYN="N">Immobilization</Keyword>
<Keyword MajorTopicYN="N">Ligninolytic</Keyword>
<Keyword MajorTopicYN="N">Nanocages</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31655399</ArticleId>
<ArticleId IdType="pii">S0045-6535(19)32356-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.chemosphere.2019.125117</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Lothe, Anjali G" sort="Lothe, Anjali G" uniqKey="Lothe A" first="Anjali G" last="Lothe">Anjali G. Lothe</name>
</noRegion>
<name sortKey="Kalra, Shashank Singh" sort="Kalra, Shashank Singh" uniqKey="Kalra S" first="Shashank Singh" last="Kalra">Shashank Singh Kalra</name>
<name sortKey="Kickhoefer, Valerie A" sort="Kickhoefer, Valerie A" uniqKey="Kickhoefer V" first="Valerie A" last="Kickhoefer">Valerie A. Kickhoefer</name>
<name sortKey="Mack, Elizabeth Erin" sort="Mack, Elizabeth Erin" uniqKey="Mack E" first="Elizabeth Erin" last="Mack">Elizabeth Erin Mack</name>
<name sortKey="Mahendra, Shaily" sort="Mahendra, Shaily" uniqKey="Mahendra S" first="Shaily" last="Mahendra">Shaily Mahendra</name>
<name sortKey="Rome, Leonard H" sort="Rome, Leonard H" uniqKey="Rome L" first="Leonard H" last="Rome">Leonard H. Rome</name>
<name sortKey="Walecka Hutchison, Claudia" sort="Walecka Hutchison, Claudia" uniqKey="Walecka Hutchison C" first="Claudia" last="Walecka-Hutchison">Claudia Walecka-Hutchison</name>
<name sortKey="Wang, Meng" sort="Wang, Meng" uniqKey="Wang M" first="Meng" last="Wang">Meng Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31655399
   |texte=   Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31655399" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020